OpenHPC (v3.1)
Cluster Building Recipes

OpenSUSE Leap 15.5 Base OS
Warewulf/SLURM Edition for Linux* (x86_64)

VERSION

3.X

Document Last Update: 2024-09-16
Document Revision: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM

Copyright © 2016-2023, OpenHPC, a Linux Foundation Collaborative Project. All rights reserved.

tribution 4.0 International License. To view a copy of this license,

@ @ This documentation is licensed under the Creative Commons At-
visit http://creativecommons.org/licenses /by /4.0.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

2 Rev: 68edf0ad2

http://creativecommons.org/licenses/by/4.0

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM open

Contents
1 Introduction 5
1.1 Target Audience 5
1.2 Requirements/Assumptions e 5
1.3 Inputs . . . o e e e e 6
2 Install Base Operating System (BOS) 7
3 Install OpenHPC Components 8
3.1 Enable OpenHPC repository for local use 8
3.2 Imstallation template oL 8
3.3 Add provisioning services on master node Lo 8
3.4 Add resource management services on masternode 10
3.5 Optionally add InfiniBand support services on masternode 10
3.6 Optionally add Omni-Path support services on masternode 11
3.7 Complete basic Warewulf setup for masternode 11
3.8 Define compute image for provisioning oL o 12
3.8.1 Build initial BOSimage 12
3.8.2 Add OpenHPC components 12
3.8.3 Customize system configuration oL o Lo L 14
3.8.4 Additional Customization (optional)o 14
3.8.4.1 Enable InfiniBand driverso 14
3.8.4.2 Enable Omni-Path drivers 15
3.8.4.3 Increase locked memory limitso oo 15
3.8.4.4 Enable ssh control via resource manager 15
3.8.4.5 Add BeeGFS 15
3.8.4.6 Add Lustreclient 16
3.8.4.7 Enable forwarding of system logs L. 17
3.8.4.8 Add ClusterShell 18
3.8.49 Add genders e 18
3.8.4.10 Add Magpie 18
3.8.4.11 Add ConMan e 18
3.8.4.12 AAANHC e 19
3.8.4.13 Add GEOPM e 19
3.85 Import files L e 19
3.9 Finalizing provisioning configuration L oL oL oL 20
3.9.1 Assemble bootstrap image oL 20
3.9.2 Assemble Virtual Node File System (VNFS) image 20
3.9.3 Register nodes for provisioning Lo 20
3.9.4 Optional kernel arguments L L e 22
3.9.5 Optionally configure stateful provisioning 22
3.10 Boot compute nodes L e e 23
4 Install OpenHPC Development Components 23
4.1 Development Tools e 23
4.2 Compilers 24
4.3 MPI Stacks oL e 24
4.4 Performance Tools 25
4.5 Setup default development environment 25
4.6 3rd Party Libraries and Tools 26

3 Rev: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM open

4.7 Optional Development Tool Builds o 27

5 Resource Manager Startup 29
6 Run a Test Job 29
6.1 Interactive execution L L L e 30
6.2 Batch execution 31
Appendices 32
A Imstallation Template 32

B Upgrading OpenHPC Packages e 33

C Imtegration Test Suite e 34

D Customization L e e 36
D.1 Adding local Lmod modules to OpenHPC hierarchy 36

D.2 Rebuilding Packages from Source o oo 37

E Package Manifest 38

F Package Signatures e 55

4 Rev: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM open

1 Introduction

This guide presents a simple cluster installation procedure using components from the OpenHPC software
stack. OpenHPC represents an aggregation of a number of common ingredients required to deploy and
manage an HPC Linux* cluster including provisioning tools, resource management, I/O clients, develop-
ment tools, and a variety of scientific libraries. These packages have been pre-built with HPC integration
in mind while conforming to common Linux distribution standards. The documentation herein is intended
to be reasonably generic, but uses the underlying motivation of a small, 4-node stateless cluster installation
to define a step-by-step process. Several optional customizations are included and the intent is that these
collective instructions can be modified as needed for local site customizations.

Base Linux Edition: this edition of the guide highlights installation without the use of a companion con-
figuration management system and directly uses distro-provided package management tools for component
selection. The steps that follow also highlight specific changes to system configuration files that are required
as part of the cluster install process.

1.1 Target Audience

This guide is targeted at experienced Linux system administrators for HPC environments. Knowledge of
software package management, system networking, and PXE booting is assumed. Command-line input
examples are highlighted throughout this guide via the following syntax:

[sms]# echo "OpenHPC hello world"

Unless specified otherwise, the examples presented are executed with elevated (root) privileges. The
examples also presume use of the BASH login shell, though the equivalent commands in other shells can
be substituted. In addition to specific command-line instructions called out in this guide, an alternate
convention is used to highlight potentially useful tips or optional configuration options. These tips are
highlighted via the following format:

Life is a tale told by an idiot, full of sound and fury signifying nothing. —Willy Shakes

1.2 Requirements/Assumptions

This installation recipe assumes the availability of a single head node master, and four compute nodes. The
master node serves as the overall system management server (SMS) and is provisioned with OpenSUSE Leap
15.5 and is subsequently configured to provision the remaining compute nodes with Warewulf in a stateless
configuration. The terms master and SMS are used interchangeably in this guide. For power management,
we assume that the compute node baseboard management controllers (BMCs) are available via IPMI from
the chosen master host. For file systems, we assume that the chosen master server will host an NFS file
system that is made available to the compute nodes. Installation information is also discussed to optionally
mount a parallel file system and in this case, the parallel file system is assumed to exist previously.

An outline of the physical architecture discussed is shown in Figure 1 and highlights the high-level
networking configuration. The master host requires at least two Ethernet interfaces with eth0 connected to
the local data center network and eth! used to provision and manage the cluster backend (note that these
interface names are examples and may be different depending on local settings and OS conventions). Two

5 Rev: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM open

compute
1 d d d

eth0 eth1 1| EEEEEEEE U —— to compute eth interface
—— to compute BMC interface

Data
Center
Network

tcp networking

Figure 1: Overview of physical cluster architecture.

logical IP interfaces are expected to each compute node: the first is the standard Ethernet interface that
will be used for provisioning and resource management. The second is used to connect to each host’s BMC
and is used for power management and remote console access. Physical connectivity for these two logical
IP networks is often accommodated via separate cabling and switching infrastructure; however, an alternate
configuration can also be accommodated via the use of a shared NIC, which runs a packet filter to divert
management packets between the host and BMC. Independent of the actual networking configuration it is
recommended to have additional security boundaries like a firewall to protect the network interfaces from
the Internet.

In addition to the IP networking, there is an optional high-speed network (InfiniBand or Omni-Path
in this recipe) that is also connected to each of the hosts. This high speed network is used for application
message passing and optionally for parallel file system connectivity as well (e.g. to existing Lustre or BeeGFS
storage targets).

1.3 Inputs

As this recipe details installing a cluster starting from bare-metal, there is a requirement to define IP ad-
dresses and gather hardware MAC addresses in order to support a controlled provisioning process. These
values are necessarily unique to the hardware being used, and this document uses variable substitution
(${variable}) in the command-line examples that follow to highlight where local site inputs are required.
A summary of the required and optional variables used throughout this recipe are presented below. Note
that while the example definitions above correspond to a small 4-node compute subsystem, the compute
parameters are defined in array format to accommodate logical extension to larger node counts.

6 Rev: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM

e ${sms_name} # Hostname for SMS server

o ${sms_ip} # Internal IP address on SMS server

e ${sms_eth internal} # Internal Ethernet interface on SMS

e ${eth provision} # Provisioning interface for computes

e ${internal netmask} # Subnet netmask for internal network

° ${ntp,server} # Local ntp server for time synchronization

e ${bmc_username} # BMC username for use by IPMI

e ${bmc_password} # BMC password for use by IPMI

e ${num computes} # Total # of desired compute nodes

o ${c.iplol}, ${c-ipl[1l}, ... # Desired compute node addresses

e ${cbmcl[01}, ${c-bmc[1]}, ... # BMC addresses for computes

e ${cmacl0]}, ${cmacl1]}, ... # MAC addresses for computes

e ${cnamel[0]}, ${cmnamel1]}, ... # Host names for computes

o ${compute_regex} # Regex matching all compute node names (e.g. “c*”)

e ${compute_prefix} # Prefix for compute node names (e.g. “c”)
Optional:

e ${sysmgmtd host} # BeeGFS System Management host name

o ${mgs_fs name} # Lustre MGS mount name

e ${sms_ipoib} # IPoIB address for SMS server

e ${ipoib_netmask} # Subnet netmask for internal IPoIB

e ${c_ipoib[0]}, ${c_ipoib[1]}, ... # IPolIB addresses for computes

o ${kargs} # Kernel boot arguments

2 Install Base Operating System (BOS)

In an external setting, installing the desired BOS on a master SMS host typically involves booting from a
DVD ISO image on a new server. With this approach, insert the OpenSUSE Leap 15.5 DVD, power cycle the
host, and follow the distro provided directions to install the BOS on your chosen master host. Alternatively,
if choosing to use a pre-installed server, please verify that it is provisioned with the required OpenSUSE
Leap 15.5 distribution.

Prior to beginning the installation process of OpenHPC components, several additional considerations
are noted here for the SMS host configuration. First, the installation recipe herein assumes that the SMS
host name is resolvable locally. Depending on the manner in which you installed the BOS, there may be an
adequate entry already defined in /etc/hosts. If not, the following addition can be used to identify your
SMS host.

[sms]# echo ${sms_ip} ${sms_name} >> /etc/hosts

While it is theoretically possible to enable SELinux on a cluster provisioned with Warewulf, doing so is
beyond the scope of this document. Even the use of permissive mode can be problematic and we therefore
recommend disabling SELinux on the master SMS host. If SELinux components are installed locally, the
selinuxenabled command can be used to determine if SELinux is currently enabled. If enabled, consult
the distro documentation for information on how to disable.

Finally, provisioning services rely on DHCP, TFTP, and HTTP network protocols. Depending on the

local BOS configuration on the SMS host, default firewall rules may prohibit these services. Consequently,
this recipe assumes that the local firewall running on the SMS host is disabled (it is still recommended to

7 Rev: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM open

have additional security boundaries like a firewall to protect the cluster from the Internet). If installed, the
default firewall service can be disabled as follows:

[sms]# systemctl disable SuSEfirewall2
[sms]# systemctl stop SuSEfirewall2

3 Install OpenHPC Components

With the BOS installed and booted, the next step is to add desired OpenHPC packages onto the master
server in order to provide provisioning and resource management services for the rest of the cluster. The
following subsections highlight this process.

3.1 Enable OpenHPC repository for local use

To begin, enable use of the OpenHPC repository by adding it to the local list of available package repositories.
Note that this requires network access from your master server to the OpenHPC repository, or alternatively,
that the OpenHPC repository be mirrored locally. In cases where network external connectivity is available,
OpenHPC provides an ohpc-release package that includes GPG keys for package signing and enabling the
repository. The example which follows illustrates installation of the ohpc-release package directly from the
OpenHPC build server.

[sms]# rpm -ivh http://repos.openhpc.community/OpenHPC/3/Leap_15/x86_64/ohpc-release-3-1.leapl5.x86_64.rpm

Tip

Many sites may find it useful or necessary to maintain a local copy of the OpenHPC repositories. To facilitate
this need, standalone tar archives are provided — one containing a repository of binary packages as well as any
available updates, and one containing a repository of source RPMS. The tar files also contain a simple bash
script to configure the package manager to use the local repository after download. To use, simply unpack
the tarball where you would like to host the local repository and execute the make_repo.sh script. Tar files
for this release can be found at http://repos.openhpc.community/dist/3.1

In addition to the OpenHPC package repository, the master host also requires access to the standard distro
repositories in order to resolve necessary dependencies.

3.2 Installation template

The collection of command-line instructions that follow in this guide, when combined with local site inputs,
can be used to implement a bare-metal system installation and configuration. The format of these com-
mands is intended to be usable via direct cut and paste (with variable substitution for site-specific settings).
Alternatively, the OpenHPC documentation package (docs-ohpc) includes a template script which includes
a summary of all of the commands used herein. This script can be used in conjunction with a simple text
file to define the local site variables defined in the previous section (§ 1.3) and is provided as a convenience
for administrators. For additional information on accessing this script, please see Appendix A.

3.3 Add provisioning services on master node

With the OpenHPC repository enabled, we can now begin adding desired components onto the master server.
This repository provides a number of aliases that group logical components together in order to help aid

8 Rev: 68edf0ad2

http://repos.openhpc.community/dist/3.1

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM openHPC

in this process. For reference, a complete list of available group aliases and RPM packages available via
OpenHPC are provided in Appendix E. To add support for provisioning services, the following commands
illustrate addition of a common base package followed by the Warewulf provisioning system.

Install base meta-packages

[sms]# zypper -n install ohpc-base
[sms]l# zypper -n install ohpc-warewulf
[sms]# zypper -n install hwloc-ohpc

Tip

Many server BIOS configurations have PXE network booting configured as the primary option in the boot
order by default. If your compute nodes have a different device as the first in the sequence, the ipmitool
utility can be used to enable PXE.

[sms]# ipmitool -E -I lanplus -H ${bmc_ipaddr} -U root chassis bootdev pxe options=persistent |

HPC systems rely on synchronized clocks throughout the system and the NTP protocol can be used to
facilitate this synchronization. To enable NTP services on the SMS host with a specific server ${ntp_server},
and allow this server to serve as a local time server for the cluster, issue the following:

[sms]# systemctl enable chronyd.service

[sms]# echo "local stratum 10" >> /etc/chrony.conf
[sms]# echo "server ${ntp_server}" >> /etc/chrony.conf
[sms]# echo "allow all" >> /etc/chrony.conf

[sms]# systemctl restart chronyd

Tip

Note that the “allow all” option specified for the chrony time daemon allows all servers on the local network
to be able to synchronize with the SMS host. Alternatively, you can restrict access to fixed IP ranges and an
example config line allowing access to a local class B subnet is as follows:

allow 192.168.0.0/16

9 Rev: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM open

3.4 Add resource management services on master node

OpenHPC provides multiple options for distributed resource management. The following command adds the
Slurm workload manager server components to the chosen master host. Note that client-side components
will be added to the corresponding compute image in a subsequent step.

Install slurm server meta-package
[sms]# zypper -n install ohpc-slurm-server

Use ohpc-provided file for starting SLURM configuration
[sms]l# cp /etc/slurm/slurm.conf.ohpc /etc/slurm/slurm.conf

Setup default cgroups file

[sms]# cp /etc/slurm/cgroup.conf.example /etc/slurm/cgroup.conf

Identify resource manager hostname on master host
[sms]# perl -pi -e "s/SlurmctldHost=\S+/SlurmctldHost=${sms_name}/" /etc/slurm/slurm.conf

There are a wide variety of configuration options and plugins available for Slurm and the example config
file illustrated above targets a fairly basic installation. In particular, job completion data will be stored in a
text file (/var/log/slurm_jobcomp.log) that can be used to log simple accounting information. Sites who
desire more detailed information, or want to aggregate accounting data from multiple clusters, will likely
want to enable the database accounting back-end. This requires a number of additional local modifications
(on top of installing slurm-slurmdbd-ohpc), and users are advised to consult the online documentation for
more detailed information on setting up a database configuration for Slurm.

Tip

SLURM requires enumeration of the physical hardware characteristics for compute nodes under its control.
In particular, three configuration parameters combine to define consumable compute resources: Sockets,
CoresPerSocket, and ThreadsPerCore. The default configuration file provided via OpenHPC assumes the
nodes are named cl-c4 and are dual-socket, 8 cores per socket, and two threads per core for this 4-node
example. If this does not reflect your local hardware, please update the configuration file at /etc/slurm/
slurm.conf accordingly to match your nodes names and particular hardware. Be sure to run scontrol
reconfigure to notify SLURM of the changes. Note that the SLURM project provides an easy-to-use online
configuration tool that can be accessed here.

. J

Other versions of this guide are available that describe installation of alternate resource management
systems, and they can be found in the docs-ohpc package.

3.5 Optionally add InfiniBand support services on master node

The following command adds OFED and PSM support using base distro-provided drivers to the chosen
master host.

[sms]# zypper -n install libibmad5 librdmacml rdma infinipath-psm dapl-devel dapl-utils libibverbs-utils

Provide udev rules to enable /dev/ipath access for InfiniPath devices
[sms]# cp /opt/ohpc/pub/examples/udev/60-ipath.rules /etc/udev/rules.d/

Load IB drivers
[sms]# systemctl start rdma

10 Rev: 68edf0ad2

https://slurm.schedmd.com/accounting.html
https://slurm.schedmd.com/configurator.html

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM openHPC

Tip

InfiniBand networks require a subnet management service that can typically be run on either an
administrative node, or on the switch itself. The optimal placement and configuration of the subnet
manager is beyond the scope of this document, but OpenSUSE Leap 15.5 provides the opensm package
should you choose to run it on the master node.

[sms]# cp /opt/ohpc/pub/examples/network/sles/ifcfg-ib0 /etc/sysconfig/network

Define local IPoIB address and netmask
[sms]# perl -pi -e "s/master_ipoib/${sms_ipoib}/" /etc/sysconfig/network/ifcfg-ib0
[sms]# perl -pi -e "s/ipoib_netmask/${ipoib_netmaskl}/" /etc/sysconfig/network/ifcfg-ib0

Initiate ibO
[sms]# ifup ibO

3.6 Optionally add Omni-Path support services on master node

The following command adds Omni-Path support using base distro-provided drivers to the chosen master
host.

[sms]# zypper -n install opa-basic-tools libibmadb

Load RDMA services
[sms]# systemctl start rdma

Tip

Omni-Path networks require a subnet management service that can typically be run on either an
administrative node, or on the switch itself. The optimal placement and configuration of the subnet
manager is beyond the scope of this document, but OpenSUSE Leap 15.5 provides the opa-fm package
should you choose to run it on the master node.

3.7 Complete basic Warewulf setup for master node

At this point, all of the packages necessary to use Warewulf on the master host should be installed. Next,
we need to update several configuration files in order to allow Warewulf to work with OpenSUSE Leap 15.5
and to support local provisioning using a second private interface (refer to Figure 1).

Tip

By default, Warewulf is configured to provision over the ethl interface and the steps below include updating
this setting to override with a potentially alternatively-named interface specified by ${sms_eth_internal}.

Configure Warewulf provisioning to use desired internal interface
[sms]# perl -pi -e "s/device = ethl/device = ${sms_eth_internall}/" /etc/warewulf/provision.conf

Configure DHCP server to use desired internal interface
[sms]# perl -pi -e "s/ DHCPD_INTERFACE=\S+/DHCPD_INTERFACE=${sms_eth_internal}/" /etc/sysconfig/dhcpd

11 Rev: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM

Configure Warewulf to use the default SLES tftp location
[sms]# perl -pi -e "s#\#tftpdir = /var/lib/#tftpdir = /srv/#" /etc/warewulf/provision.conf

Configure Warewulf to use the correct certificate bundle
[sms]# perl -pi -e "s,cacert =.%*,cacert = /etc/ssl/ca-bundle.pem," /etc/warewulf/provision.conf

Update Warewulf http configuration to use the SLES version of Apache modules

[sms]# export MODFILE=/etc/apache2/conf.d/warewulf-httpd.conf

[sms]# perl -pi -e "s#modules/mod_perl.so\$#/usr/1ib64/apache2/mod_perl.so#" $MODFILE
[sms]# perl -pi -e "s#modules/mod_version.so\$#/usr/1ib64/apache2/mod_version.so#" $MODFILE

Enable internal interface for provisioning
[sms]# ip link set dev ${sms_eth_internal} up
[sms]# ip address add ${sms_ip}/${internal_netmask} broadcast + dev ${sms_eth_internall}

Enable Apache mod_rewrite module (needed for warewulf)
[sms]# a2enmod mod_rewrite

Restart/enable relevant services to support provisioning
[sms]# systemctl enable mysql.service

[sms]# systemctl restart mysql

[sms]# systemctl enable apache2.service

[sms]# systemctl restart apache2

[sms]# systemctl enable dhcpd.service

[sms]# systemctl enable tftp.socket

[sms]# systemctl start tftp.socket

3.8 Define compute image for provisioning

With the provisioning services enabled, the next step is to define and customize a system image that can
subsequently be used to provision one or more compute nodes. The following subsections highlight this
process.

3.8.1 Build initial BOS image

The OpenHPC build of Warewulf includes specific enhancements enabling support for OpenSUSE Leap 15.5.
The following steps illustrate the process to build a minimal, default image for use with Warewulf. We begin
by creating a directory structure on the master host that will represent the root filesystem of the compute
node. The default location for this example is in /opt/ohpc/admin/images/leapi5.5.

Define chroot location

[sms]# export CHROOT=/opt/ohpc/admin/images/leapl5.5
Build initial chroot image

[sms]# mkdir -p -m 755 $CHROOT

[sms]# mkdir -m 755 $CHROOT/dev

[sms]# mknod -m 666 $CHROOT/dev/zero c 1 5

[sms]# wwmkchroot -v opensuse-15.5 $CHROOT

Enable OpenHPC repo in chroot

[sms]# cp -p /etc/zypp/repos.d/OpenHPC*.repo $CHROOT/etc/zypp/repos.d

Import GPG keys for chroot repository usage

[sms]# zypper -n --root $CHROOT --no-gpg-checks --gpg-auto-import-keys refresh

create chroot housing dir
create chroot /dev dir
create /dev/zero device
create base image

H H R

3.8.2 Add OpenHPC components

The wwmkchroot process used in the previous step is designed to provide a minimal OpenSUSE Leap 15.5
configuration. Next, we add additional components to include resource management client services, NTP

12 Rev: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM

support, and other additional packages to support the default OpenHPC environment. This process augments
the chroot-based install performed by wwmkchroot to modify the base provisioning image and will access the

BOS and OpenHPC repositories to resolve package install requests.

To access the remote repositories by hostname (and not IP addresses), the chroot environment needs to
be updated to enable DNS resolution. Assuming that the master host has a working DNS configuration in

place, the chroot environment can be updated with a copy of the configuration as follows:

[sms]# cp -p /etc/resolv.conf $CHROOT/etc/resolv.conf

Now, we can include additional required components to the compute instance including base components,

resource manager client, NTP, and development environment modules support.

Import GPG keys for chroot repository usage
[sms]# zypper -n --root $CHROOT --no-gpg-checks --gpg-auto-import-keys refresh

copy credential files into $CHROOT to ensure consistent uid/gids for slurm/munge at
install. Note that these will be synchronized with future updates via the provisioning system.
[sms]l# cp /etc/passwd /etc/group $CHROOT/etc

Add OpenHPC base components
[sms]# zypper -n --root $CHROOT install ohpc-base-compute

Add SLURM client support meta-package and enable munge and slurm
[sms]# zypper -n --root $CHROOT install ohpc-slurm-client

[sms]# chroot $CHROOT systemctl enable munge

[sms]# chroot $CHROOT systemctl enable slurmd

Register Slurm server with computes (using "configless" option)
[sms]# echo SLURMD_OPTIONS="--conf-server ${sms_ip}" > $CHROOT/etc/sysconfig/slurmd

Provide udev rules to enable /dev/ipath access for InfiniPath devices
[sms]# cp /opt/ohpc/pub/examples/udev/60-ipath.rules $CHROOT/etc/udev/rules.d/

Add Network Time Protocol (NTP) support

[sms]# zypper -n --root $CHROOT install chrony

[sms]# chroot $CHROOT systemctl enable chronyd

Identify master host as local NTP server

[sms]# echo "server ${sms_ip} iburst" >> $CHROOT/etc/chrony.conf

Add kernel drivers
[sms]l# zypper -n --root $CHROOT install kernel-default

Include modules user environment
[sms]# zypper -n --root $CHROOT install lmod-ohpc

Enable ssh access
[sms]# chroot $CHROOT systemctl enable sshd.service

Remove default hostname to allow WW to provision network names
[sms]# mv $CHROOT/etc/hostname $CHROOT/etc/hostname.orig

13 Rev: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM

3.8.3 Customize system configuration

Prior to assembling the image, it is advantageous to perform any additional customization within the chroot
environment created for the desired compute instance. The following steps document the process to add a
local ssh key created by Warewulf to support remote access, identify the resource manager server, configure
NTP for compute resources, and enable NFS mounting of a $HOME file system and the public OpenHPC
install path (/opt/ohpc/pub) that will be hosted by the master host in this example configuration.

Initialize warewulf database and ssh_keys
[sms]# wwinit database
[sms]# wwinit ssh_keys

Add NFS client mounts of /home and /opt/ohpc/pub to base image
[sms]# echo "${sms_ipl}:/home /home nfs nfsvers=4,nodev,nosuid O 0" >> $CHROOT/etc/fstab
[sms]# echo "${sms_ipl}:/opt/ohpc/pub /opt/ohpc/pub nfs nfsvers=4,nodev O 0" >> $CHROOT/etc/fstab

Export /home and OpenHPC public packages from master server
[sms]# echo "/home *(rw,no_subtree_check,fsid=10,no_root_squash)" >> /etc/exports
[sms]# echo "/opt/ohpc/pub *(ro,no_subtree_check,fsid=11)" >> /etc/exports

If planning to install the Intel® oneAPI compiler runtime (see §4.7), register the following additional path
(/opt/intel) to share with computes:

(Optional) Setup NFS mount for /opt/intel if planning to install oneAPI packages

[sms]# mkdir /opt/intel

[sms]# echo "/opt/intel *(ro,no_subtree_check,fsid=12)" >> /etc/exports

[sms]# echo "${sms_ipl}:/opt/intel /opt/intel nfs nfsvers=4,nodev O 0" >> $CHROOT/etc/fstab

Finalize NFS config and restart
[sms]# exportfs -a

[sms]# systemctl restart nfs-server
[sms]# systemctl enable nfs-server

3.8.4 Additional Customization (optional)

This section highlights common additional customizations that can optionally be applied to the local cluster
environment. These customizations include:

Add InfiniBand or Omni-Path drivers

° e Add ClusterShell
e Increase memlock limits e Add mrsh

e Restrict ssh access to compute resources e Add genders

e Add BeeGFS client e Add ConMan

e Add Lustre client e Add GEOPM

e Enable syslog forwarding

Details on the steps required for each of these customizations are discussed further in the following sections.

3.8.4.1 Enable InfiniBand drivers If your compute resources support InfiniBand, the following com-
mands add OFED and PSM support using base distro-provided drivers to the compute image.

Add IB support and enable

[sms]# zypper -n --root $CHROOT install rdma-core libibmad5 librdmacml dapl-devel dapl-utils libibverbs-utils
[sms]# chroot $CHROOT systemctl enable rdma

14 Rev: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM

3.8.4.2 Enable Omni-Path drivers If your compute resources support Omni-Path, the following com-
mands add OPA support using base distro-provided drivers to the compute image.

Add OPA support and enable

[sms]# zypper -n --root $CHROOT install opa-basic-tools libibmad5 libibverbs
[sms]# zypper -n --root $CHROOT install libpsm2-2 libpsm2-compat

[sms]# chroot $CHROOT systemctl enable rdma

3.8.4.3 Increase locked memory limits In order to utilize InfiniBand or Omni-Path as the underlying
high speed interconnect, it is generally necessary to increase the locked memory settings for system users.
This can be accomplished by updating the /etc/security/limits.conf file and this should be performed
within the compute image and on all job submission hosts. In this recipe, jobs are submitted from the master
host, and the following commands can be used to update the maximum locked memory settings on both the
master host and the compute image:

Update memlock settings on master
[sms]# perl -pi -e 's/# End of file/* soft memlock unlimited\n$&/s' /etc/security/limits.conf
[sms]# perl -pi -e 's/# End of file/* hard memlock unlimited\n$&/s' /etc/security/limits.conf

Update memlock settings within compute image
[sms]# perl -pi -e 's/# End of file/* soft memlock unlimited\n$&/s' $CHROOT/etc/security/limits.conf
[sms]# perl -pi -e 's/# End of file/* hard memlock unlimited\n$&/s' $CHROOT/etc/security/limits.conf

3.8.4.4 Enable ssh control via resource manager An additional optional customization that is
recommended is to restrict ssh access on compute nodes to only allow access by users who have an active
job associated with the node. This can be enabled via the use of a pluggable authentication module (PAM)
provided as part of the Slurm package installs. To enable this feature within the compute image, issue the
following:

[sms]# echo "account required pam_slurm.so" >> $CHROOT/etc/pam.d/sshd

3.8.4.5 Add BeeGFS To add optional support for mounting BeeGFS file systems, an additional ex-
ternal zypper repository provided by the BeeGFS project must be configured. In this recipe, it is assumed
that the file system is hosted by servers that are pre-existing and are not part of the install process. The
${sysmgmtd host} should point the server running the BeeGFS Management Service. Starting the client ser-
vice triggers a build of a kernel module, hence the kernel module development packages must be installed first.
As with Lustre, a default OpenSUSE Leap 15.5 environment may not allow loading of the necessary BeeGFS
kernel modules. Consequently, the example below includes steps which update the /etc/modprobe.d/10-
unsupported-modules.conf file to allow loading of the necessary modules.

Add BeeGFS client software to master host

[sms]# zypper ar https://www.beegfs.io/release/beegfs_7.2/dists/beegfs-slesl5.repo
install matching kernel-default-devel and beegfs packages

[sms]# version="rpm -q --qf "%{VERSION}-%{RELEASE}\n" kernel-default”

[sms]l# zypper -n install kernel-default-devel-${version}

[sms]# zypper -n install gcc beegfs-client beegfs-helperd beegfs-utils

Enable OFED support in client
[sms]# perl -pi -e "s/"buildArgs=-j8/buildArgs=-3j8 BEEGFS_OPENTK_IBVERBS=1/" \
/etc/beegfs/beegfs-client-autobuild.conf

15 Rev: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM

Define client's management host
[sms]# /opt/beegfs/sbin/beegfs-setup-client -m ${sysmgmtd_host}

Update configuration to allow BeeGFS modules to be loaded on master host

[sms]# perl -pi -e "s/"allow_unsupported_modules 0O/allow_unsupported_modules 1/" \
/etc/modprobe.d/10-unsupported-modules.conf

[sms]# systemctl start beegfs-helperd

Build kernel and mount file system

[sms]# systemctl start beegfs-client

Add BeeGFS client software to compute node image
[sms]# wget -P $CHROOT/etc/zypp/repos.d https://www.beegfs.io/release/beegfs_7.2/dists/beegfs-slesib.repo
[sms]# zypper -n --root $CHROOT install beegfs-client beegfs-helperd beegfs-utils

Disable auto-build of kernel module in compute node image
[sms]l# perl -pi -e "s/“buildEnabled=true/buildEnabled=false/" $CHROOT/etc/beegfs/beegfs-client-autobuild.conf
[sms]# rm -f $CHROOT/var/lib/beegfs/client/force-auto-build

Enable client daemons on compute nodes

[sms]# perl -pi -e "s/"allow_unsupported_modules 0O/allow_unsupported_modules 1/" \
$CHROOT/etc/modprobe .d/10-unsupported-modules. conf

[sms]# chroot $CHROOT systemctl enable beegfs-helperd beegfs-client

Copy client config to compute nodes
[sms]# cp /etc/beegfs/beegfs-client.conf $CHROOT/etc/beegfs/beegfs-client.conf

Include kernel module in warewulf bootstrap
[sms]# echo "drivers += beegfs" >> /etc/warewulf/bootstrap.conf

3.8.4.6 Add Lustre client To add Lustre client support on the cluster, it necessary to install the client
and associated modules on each host needing to access a Lustre file system. In this recipe, it is assumed
that the Lustre file system is hosted by servers that are pre-existing and are not part of the install process.
Outlining the variety of Lustre client mounting options is beyond the scope of this document, but the general
requirement is to add a mount entry for the desired file system that defines the management server (MGS)
and underlying network transport protocol. To add client mounts on both the master server and compute
image, the following commands can be used. Note that the Lustre file system to be mounted is identified
by the ${mgs_fs name} variable. In this example, the file system is configured to be mounted locally as
/mnt/lustre. Additionally, note that a default OpenSUSE Leap 15.5 environment may not allow loading
of the necessary Lustre kernel modules. Consequently, the example below includes steps which update the
/etc/modprobe.d/10-unsupported-modules.conf file to allow loading of the necessary modules.

Add Lustre client software to master host
[sms]# zypper -n install lustre-client-ohpc

Update configuration to allow Lustre modules to be loaded on master host
[sms]# perl -pi -e "s/"allow_unsupported_modules 0/allow_unsupported_modules 1/" \
/etc/modprobe.d/10-unsupported-modules.conf

Include Lustre client software in compute image
[sms]# zypper -n --root $CHROOT install lustre-client-ohpc

Update configuration to allow Lustre modules to be loaded on compute hosts
[sms]# perl -pi -e "s/"allow_unsupported_modules O/allow_unsupported_modules 1/" \
$CHROOT/etc/modprobe.d/10-unsupported-modules.conf

16 Rev: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM open

Include mount point and file system mount in compute image
[sms]# mkdir $CHROOT/mnt/lustre
[sms]# echo "${mgs_fs_name} /mnt/lustre lustre defaults,_netdev,localflock O 0" >> $CHROOT/etc/fstab

The suggested mount options shown for Lustre leverage the localflock option. This is a Lustre-specific
setting that enables client-local flock support. It is much faster than cluster-wide flock, but if you have an
application requiring cluster-wide, coherent file locks, use the standard flock attribute instead.

The default underlying network type used by Lustre is tcp. If your external Lustre file system is to be
mounted using a network type other than tcp, additional configuration files are necessary to identify the de-
sired network type. The example below illustrates creation of modprobe configuration files instructing Lustre
to use an InfiniBand network with the o2ib LNET driver attached to ib0. Note that these modifications
are made to both the master host and compute image.

[sms]# echo "options lnet networks=02ib(ib0)" >> /etc/modprobe.d/lustre.conf
[sms]# echo "options lnet networks=02ib(ib0)" >> $CHROOT/etc/modprobe.d/lustre.conf

With the Lustre configuration complete, the client can be mounted on the master host as follows:

[sms]# mkdir /mnt/lustre
[sms]# mount -t lustre -o localflock ${mgs_fs_name} /mnt/lustre

3.8.4.7 Enable forwarding of system logs It is often desirable to consolidate system logging infor-
mation for the cluster in a central location, both to provide easy access to the data, and to reduce the impact
of storing data inside the stateless compute node’s memory footprint. The following commands highlight
the steps necessary to configure compute nodes to forward their logs to the SMS, and to allow the SMS to
accept these log requests.

Configure SMS to receive messages and reload rsyslog configuration
[sms]# echo ’module(load="imudp")’ >> /etc/rsyslog.d/ohpc.conf

[sms]# echo ’input(type="imudp" port="514")’ >> /etc/rsyslog.d/ohpc.conf
[sms]# systemctl restart rsyslog

Define compute node forwarding destination
[sms]# echo "*.* @${sms_ip}:514" >> $CHROOT/etc/rsyslog.conf
[sms]# echo "Target=\"${sms_ip}\" Protocol=\"udp\"" >> $CHROOT/etc/rsyslog.conf

Disable most local logging on computes. Emergency and boot logs will remain on the compute nodes
[sms]# perl -pi -e "s/~*\.info/\\#*\.info/" $CHROOT/etc/rsyslog.conf

[sms]# perl -pi -e "s/"authpriv/\\#authpriv/" $CHROOT/etc/rsyslog.conf

[sms]# perl -pi -e "s/"mail/\\#mail/" $CHROOT/etc/rsyslog.conf

[sms]# perl -pi -e "s/“cron/\\#cron/" $CHROOT/etc/rsyslog.conf

[sms]# perl -pi -e "s/“uucp/\\#uucp/" $CHROOT/etc/rsyslog.conf

17 Rev: 68edf0ad2

http://wiki.lustre.org/Mounting_a_Lustre_File_System_on_Client_Nodes

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM

3.8.4.8 Add ClusterShell ClusterShell is an event-based Python library to execute commands in par-

allel across cluster nodes. Installation and basic configuration defining three node groups (adm, compute,
and all) is as follows:

Install ClusterShell
[sms]# zypper -n install clustershell

Setup node definitions

[sms]# cd /etc/clustershell/groups.d

[sms]# mv local.cfg local.cfg.orig

[sms]# echo "adm: ${sms_name}" > local.cfg

[sms]# echo "compute: ${compute_prefix}[1-${num_computes}]" >> local.cfg
[sms]# echo "all: Qadm,@compute" >> local.cfg

3.8.4.9 Add genders genders is a static cluster configuration database or node typing database used
for cluster configuration management. Other tools and users can access the genders database in order to
make decisions about where an action, or even what action, is appropriate based on associated types or
7 genders”. Values may also be assigned to and retrieved from a gender to provide further granularity. The
following example highlights installation and configuration of two genders: compute and bmc.

Install genders
[sms]# zypper -n install genders-ohpc

Generate a sample genders file
[sms]# echo -e "${sms_name}\tsms" > /etc/genders
[sms]# for ((i=0; i<$num_computes; i++)) ; do
echo -e "${c_name[$i]}\tcompute,bmc=${c_bmc[$i]}"
done >> /etc/genders

3.8.4.10 Add Magpie Magpie contains a number of scripts to aid in running a variety of big data
software frameworks within HPC queuing environments. Examples include Hadoop, Spark, Hbase, Storm,
Pig, Mahout, Phoenix, Kafka, Zeppelin, and Zookeeper. Consult the online repository for more information
on using these scripts; basic installation is outlined as follows:

Install magpie
[sms]# zypper -n install magpie-ohpc

3.8.4.11 Add ConMan ConMan is a serial console management program designed to support a large
number of console devices and simultaneous users. It supports logging console device output and connecting
to compute node consoles via IPMI serial-over-lan. Installation and example configuration is outlined below.

Install conman to provide a front-end to compute consoles and log output
[sms]# zypper -n install conman-ohpc

Configure conman for computes (note your IPMI password is required for console access)
[sms]# for ((i=0; i<$num_computes; i++)) ; do
echo -n 'CONSOLE name="'${c_name[$i]}'" dev="ipmi:'${c_bmc[$il}'" '

echo 'ipmiopts="'U:${bmc_username},P:${IPMI_PASSWORD:-undefined},W:solpayloadsize'"'
done >> /etc/conman.conf

Enable and start conman
[sms]# systemctl enable conman
[sms]# systemctl start conman

18 Rev: 68edf0ad2

https://github.com/LLNL/magpie

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM

Note that an additional kernel boot option is typically necessary to enable serial console output. This option
is highlighted in §3.9.4 after compute nodes have been registered with the provisioning system.

3.8.4.12 Add NHC Resource managers often provide for a periodic "node health check” to be performed
on each compute node to verify that the node is working properly. Nodes which are determined to be
”unhealthy” can be marked as down or offline so as to prevent jobs from being scheduled or run on them.
This helps increase the reliability and throughput of a cluster by reducing preventable job failures due to
misconfiguration, hardware failure, etc. OpenHPC distributes NHC to fulfill this requirement.

In a typical scenario, the NHC driver script is run periodically on each compute node by the resource
manager client daemon. It loads its configuration file to determine which checks are to be run on the current
node (based on its hostname). Each matching check is run, and if a failure is encountered, NHC will exit
with an error message describing the problem. It can also be configured to mark nodes offline so that the
scheduler will not assign jobs to bad nodes, reducing the risk of system-induced job failures.

Install NHC on master and compute nodes
[sms]# zypper -n install nhc-ohpc
[sms]# zypper -n --root $CHROOT install nhc-ohpc

Register as SLURM's health check program
[sms]# echo "HealthCheckProgram=/usr/sbin/nhc" >> /etc/slurm/slurm.conf
[sms]# echo "HealthCheckInterval=300" >> /etc/slurm/slurm.conf # execute every five minutes

3.8.4.13 Add GEOPM The Global Extensible Open Power Manager (GEOPM) is a framework for
exploring power and energy optimizations targeting high performance computing. The GEOPM package
provides built-in features ranging from static management of power policy for each individual compute node,
to dynamic coordination of the power policy and performance across all compute nodes hosting an MPI
application on a portion of a distributed computing system. The dynamic coordination is implemented as a
hierarchical control system for scalable communication and decentralized control. The following commands
customize the provisioning environment to support GEOPM installation which is done in a later step in §4.4.

Disable Intel pstate driver for compute nodes as it interferes with GEOPM's operation.
[sms]# export kargs="${kargs} intel_pstate=disable"

GEOPM uses the msr-safe kernel module to allow users read/write access to whitelisted model specific
registers (MSRs). An associated Slurm plugin ensures that MSRs modified within a user’s slurm job are
reset to their original state after job completion.

Install msr-safe kernel module and SLURM plugin into compute image
[sms]# zypper -n --root $CHROOT install kmod-msr-safe-ohpc

[sms]# zypper -n --root $CHROOT install msr-safe-ohpc

[sms]# zypper -n --root $CHROOT install msr-safe-slurm-ohpc

For documentation on how to configure and use GEOPM, please see the geopm man page and tutorials
available online.

3.8.5 Import files

The Warewulf system includes functionality to import arbitrary files from the provisioning server for distri-
bution to managed hosts. This is one way to distribute user credentials to compute nodes. To import local
file-based credentials, issue the following:

19 Rev: 68edf0ad2

https://github.com/geopm/geopm/tree/dev/tutorial

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM

[sms]# wwsh file import /etc/passwd
[sms]# wwsh file import /etc/group
[sms]# wwsh file import /etc/shadow

Similarly, to import the cryptographic key that is required by the munge authentication library to be available
on every host in the resource management pool, issue the following:

[sms]# wwsh file import /etc/munge/munge.key

Finally, to add optional support for controlling TPoIB interfaces (see §3.5), OpenHPC includes a template
file for Warewulf that can optionally be imported and used later to provision ib0O network settings.

[sms]l# wwsh file import /opt/ohpc/pub/examples/network/sles/ifcfg-ib0.ww
[sms]# wwsh -y file set ifcfg-ibO.ww --path=/etc/sysconfig/network/ifcfg-ib0

3.9 Finalizing provisioning configuration

Warewulf employs a two-stage boot process for provisioning nodes via creation of a bootstrap image that
is used to initialize the process, and a virtual node file system capsule containing the full system image.
This section highlights creation of the necessary provisioning images, followed by the registration of desired
compute nodes.

3.9.1 Assemble bootstrap image

The bootstrap image includes the runtime kernel and associated modules, as well as some simple scripts to
complete the provisioning process. The following commands highlight the inclusion of additional drivers and
creation of the bootstrap image based on the running kernel.

(Optional) Include drivers from kernel updates; needed if enabling additional kernel modules on computes
[sms]# export WW_CONF=/etc/warewulf/bootstrap.conf
[sms]# echo "drivers += updates/kernel/" >> $WW_CONF

Build bootstrap image
[sms]# wwbootstrap “uname -r°

3.9.2 Assemble Virtual Node File System (VNFS) image

With the local site customizations in place, the following step uses the wwvnfs command to assemble a VNFS
capsule from the chroot environment defined for the compute instance.

[sms]# wwvnfs --chroot $CHROOT

3.9.3 Register nodes for provisioning

In preparation for provisioning, we can now define the desired network settings for four example compute
nodes with the underlying provisioning system and restart the dhcp service. Note the use of variable names
for the desired compute hostnames, node IPs, and MAC addresses which should be modified to accommodate
local settings and hardware. By default, Warewulf uses network interface names of the eth# variety and adds
kernel boot arguments to maintain this scheme on newer kernels. Consequently, when specifying the desired
provisioning interface via the $eth _provision variable, it should follow this convention. Alternatively, if

20 Rev: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM open

you prefer to use the predictable network interface naming scheme (e.g. names like en4s0£0), additional
steps are included to alter the default kernel boot arguments and take the eth# named interface down after
bootstrapping so the normal init process can bring it up again using the desired name.

Also included in these steps are commands to enable Warewulf to manage IPoIB settings and correspond-
ing definitions of IPoIB addresses for the compute nodes. This is typically optional unless you are planning
to include a Lustre client mount over InfiniBand. The final step in this process associates the VNFS image
assembled in previous steps with the newly defined compute nodes, utilizing the user credential files and
munge key that were imported in §3.8.5.

Set provisioning interface as the default networking device

[sms]# echo "GATEWAYDEV=${eth_provision}" > /tmp/network.$$

[sms]# wwsh -y file import /tmp/network.$$ --name network

[sms]# wwsh -y file set network --path /etc/sysconfig/metwork --mode=0644 --uid=0

Add nodes to Warewulf data store
[sms]# for ((i=0; i<$num_computes; i++)) ; do
wwsh -y node new ${c_name[i]} --ipaddr=${c_ip[il} --hwaddr=${c_mac[il} -D ${eth_provision}
done

Additional step required if desiring to use predictable network interface
naming schemes (e.g. en4s0f0). Skip if using eth# style names.

[sms]# export kargs="${kargs} net.ifnames=1,biosdevname=1"

[sms]# wwsh provision set --postnetdown=1 "${compute_regex}"

Define provisioning image for hosts
[sms]# wwsh -y provision set "${compute_regex}" --vnfs=leapl5.5 --bootstrap="uname -r> \
--files=dynamic_hosts,passwd, group,shadow,munge.key,network

Optionally define IPoIB network settings (required if planning to mount Lustre/BeeGFS over IB)
[sms]# for ((i=0; i<$num_computes; i++)) ; do
wwsh -y node set ${c_name[$il} -D ib0 --ipaddr=${c_ipoib[$il} --netmask=${ipoib_netmask}
done
[sms]# wwsh -y provision set "${compute_regex}" --fileadd=ifcfg-ib0.ww

Tip

Warewulf includes a utility named wwnodescan to automatically register new compute nodes versus the
outlined node-addition approach which requires hardware MAC addresses to be gathered in advance. With
wwnodescan, nodes will be added to the Warewulf database in the order in which their DHCP requests are
received by the master, so care must be taken to boot nodes in the order one wishes to see preserved in the
Warewulf database. The IP address provided will be incremented after each node is found, and the utility
will exit after all specified nodes have been found. Example usage is highlighted below:

[sms]# wwnodescan --netdev=${eth_provision} --ipaddr=${c_ip[0]} --netmask=${internal_netmask} \
--vnfs=leapl5.5 --bootstrap="uname -r° --listen=${sms_eth_internal} ${c_name[0]}-${c_name[3]}

Restart dhcp / update PXE
[sms]# systemctl restart dhcpd
[sms]# wwsh pxe update

21 Rev: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM open

3.9.4 Optional kernel arguments

If you chose to enable ConMan in §3.8.4.11, additional warewulf configuration is needed as follows:

Define node kernel arguments to support SOL console
[sms]# wwsh -y provision set "${compute_regex}" --console=ttyS1,115200

If any components have added to the boot time kernel command line arguments for the compute nodes, the
following command is required to store the configuration in Warewulf:

Set optional compute node kernel command line arguments.
[sms]# wwsh -y provision set "${compute_regex}" --kargs="${kargs}"

3.9.5 Optionally configure stateful provisioning

Warewulf normally defaults to running the assembled VNFS image out of system memory in a stateless
configuration. Alternatively, Warewulf can also be used to partition and format persistent storage such that
the VINFS image can be installed locally to disk in a stateful manner. This does, however, require that a
boot loader (GRUB) be added to the image as follows:

Add GRUB2 bootloader and re-assemble VNFS image
[sms]# zypper -n --root $CHROOT install grub2
[sms]# wwvnfs --chroot $CHROOT

Enabling stateful nodes also requires additional site-specific, disk-related parameters in the Warewulf con-
figuration, and several example partitioning scripts are provided in the distribution.

Select (and customize) appropriate parted layout example

[sms]l# cp /etc/warewulf/filesystem/examples/gpt_example.cmds /etc/warewulf/filesystem/gpt.cmds
[sms]# wwsh provision set --filesystem=gpt "${compute_regex}"

[sms]# wwsh provision set --bootloader=sda "${compute_regex}"

Tip

Those provisioning compute nodes in UEFI mode will install a slightly different set of packages in to the
VNFS. Warewulf also provides an example EFTI filesystem layout.

Add GRUB2 bootloader and re-assemble VNFS image

[sms]# zypper -n --root $CHROOT install grub2-efi grub2-efi-modules

[sms]# wwvnfs --chroot $CHROOT

[sms]l# cp /etc/warewulf/filesystem/examples/efi_example.cmds /etc/warewulf/filesystem/efi.cmds
[sms]# wwsh provision set --filesystem=efi "${compute_regexl}"

[sms]# wwsh provision set --bootloader=sda "${compute_regex}"

. J

Upon subsequent reboot of the modified nodes, Warewulf will partition and format the disk to host the
desired VNFS image. Once the image is installed to disk, warewulf can be configured to use the nodes’ local
storage as the boot device.

Configure local boot (after successful provisioning)
[sms]# wwsh provision set --bootlocal=normal "${compute_regex}"

22 Rev: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM open

3.10 Boot compute nodes

At this point, the master server should be able to boot the newly defined compute nodes. Assuming
that the compute node BIOS settings are configured to boot over PXE, all that is required to initiate the
provisioning process is to power cycle each of the desired hosts using IPMI access. The following commands
use the ipmitool utility to initiate power resets on each of the four compute hosts. Note that the utility
requires that the IPMI_PASSWORD environment variable be set with the local BMC password in order to work
interactively.

[sms]# for ((i=0; i<${num_computes}; i++)) ; do
ipmitool -E -I lanplus -H ${c_bmc[$i]l} -U ${bmc_username} -P ${bmc_password} chassis power reset
done

Once kicked off, the boot process should take less than 5 minutes (depending on BIOS post times) and
you can verify that the compute hosts are available via ssh, or via parallel ssh tools to multiple hosts. For
example, to run a command on the newly imaged compute hosts using pdsh, execute the following:

[sms]# pdsh -w ${compute_prefix}[1-${num_computes}] uptime

cl 05:03am up 0:02, O users, load average: 0.20, 0.13, 0.05
c2 05:03am up 0:02, O users, load average: 0.20, 0.14, 0.06
c3 05:03am up 0:02, O users, load average: 0.19, 0.15, 0.06
c4 05:03am up 0:02, O users, load average: 0.15, 0.12, 0.05

While the pxelinux.0 and 1pxelinux.O files that ship with Warewulf to enable network boot support a wide
range of hardware, some hosts may boot more reliably or faster using the BOS versions provided via the
syslinux package. If you encounter PXE issues, consider replacing the pxelinux.0 and lpxelinux.O files
supplied with warewulf-provision-ohpc with versions from syslinux.

4 Install OpenHPC Development Components

The install procedure outlined in §3 highlighted the steps necessary to install a master host, assemble
and customize a compute image, and provision several compute hosts from bare-metal. With these steps
completed, additional OpenHP C-provided packages can now be added to support a flexible HPC development
environment including development tools, C/C++/FORTRAN compilers, MPI stacks, and a variety of 3rd
party libraries. The following subsections highlight the additional software installation procedures.

4.1 Development Tools

To aid in general development efforts, OpenHPC provides recent versions of the GNU autotools collection,
the Valgrind memory debugger, EasyBuild, and Spack. These can be installed as follows:

Install autotools meta-package
[sms]# zypper -n install ohpc-autotools

[sms]# zypper -n install EasyBuild-ohpc
[sms]# zypper -n install hwloc-ohpc
[sms]# zypper -n install spack-ohpc
[sms]# zypper -n install valgrind-ohpc

23 Rev: 68edf0ad2

Install Guide (v3.1): OpenSUSE Leap 15.5/x86_64 + Warewulf + SLURM

4.2 Compilers

OpenHPC presently packages the GNU compiler toolchain integrated with the underlying Lmod modules
system in a hierarchical fashion. The modules system will conditionally present compiler-dependent software
based on the toolchain currently loaded.

[sms]# zypper -n install gnul3-compilers-ohpc

4.3 MPI Stacks

For MPI development and runtime support, OpenHPC provides pre-packaged builds for a variety of MPI
families and transport layers. Currently available options and their applicability to various network trans-
ports are summarized in Table 1. The command that follows installs a starting set of MPI families that are
compatible with both ethernet and high-speed fabrics.

Table 1: Available MPI variants

Ethernet (TCP) InfiniBand Intel® Omni-Path

MPICH (ofi) v v v
MPICH (ucx) v v v
MVAPICH2 v

MVAPICH2 (psm2) v
OpenMPT (ofi/ucx) v v v

[sms]l# zypper -n install openmpib5-pmix-gnul3-ohpc mpich-ofi-gnul3-ohpc

Note that OpenHPC 2.x introduces the use of two related transport layers for the MPICH and OpenMPI
builds that support a variety of underlying fabrics: UCX (Unified Communication X) and OFI (OpenFabrics
interfaces). In the case of OpenMPI, a monolithic build is provided which supports both transports and
end-users can customize their runtime preferences with environment variables. For MPICH, two separate
builds are provided and the example above highlighted installing the ofi variant. However